If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(R)=-0.5R^2+1900R
We move all terms to the left:
(R)-(-0.5R^2+1900R)=0
We get rid of parentheses
0.5R^2-1900R+R=0
We add all the numbers together, and all the variables
0.5R^2-1899R=0
a = 0.5; b = -1899; c = 0;
Δ = b2-4ac
Δ = -18992-4·0.5·0
Δ = 3606201
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$R_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$R_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3606201}=1899$$R_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1899)-1899}{2*0.5}=\frac{0}{1} =0 $$R_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1899)+1899}{2*0.5}=\frac{3798}{1} =3798 $
| X3+x=7 | | 4(x-3)-5x=-3(x-1) | | 4(x-3)-5x=-3(x-1 | | 9(x-5)+54=120 | | 9x-9=(2x-4)+(4x+10) | | 5n2+40n=0 | | 26/t-10=7 | | 2x+2x+5+12+8=180 | | 2x+2x+5+12+8=1800 | | 2x+2x+5+12+8=360 | | 115-10k=105 | | 898-f=897 | | 65-m=6 | | 20/z+319=332 | | √3p+13=p+3 | | -7−8s=-5s+8 | | x+40-180=3x | | 62+17r=946 | | 3g-36=39 | | 25/b-3=7 | | 278-u=65 | | 6q-19=71 | | 7+11x=x+16 | | 93-m=37 | | 13=48-u | | 3/d+16=22 | | 10/z-10=1 | | 900/u=30 | | 24=100-q | | 5*10^(x-2)=83 | | 19=45-k | | 5j-7=17 |